
Tutorial
A step-by-step introduction to the main facilities of QuEST-MMA.

Table of contents:
 • Connecting to QuEST
 • Creating quantum registers
 • Specifying gates
 • Applying circuits
 • Analysing quantum states

Connecting to QuEST
Import the QuEST-MMA package . Further functions will be loaded once connected to an QuEST

environment.

Import["https://qtechtheory.org/questlink.m"]

One then connects to a QuEST runtime environment, which can be local or remote.

? CreateRemoteQuESTEnv
? CreateLocalQuESTEnv
? CreateDownloadedQuESTEnv

CreateRemoteQuESTEnv[ip, port1, port2] connects to a remote QuESTlink server at ip, at the
given ports, and defines several QuEST functions, returning a link object. This should be
called once. The QuEST function defintions can be cleared with DestroyQuESTEnv[link].

CreateLocalQuESTEnv[fn] connects to a local 'quest_link' executable,
located at fn, running single-CPU QuEST. This should be called once. The
QuEST function defintions can be cleared with DestroyQuESTEnv[link].

CreateLocalQuESTEnv[] connects to a 'quest_link' executable in the working directory.

CreateDownloadedQuESTEnv[] downloads a precompiled single-CPU
QuESTlink binary (specific to your operating system) directly from Github, then
locally connects to it. This should be called once, before using the QuESTlink API.

CreateDownloadedQuESTEnv[os] forces downloaded of the binary for operating
system 'os', which must one of {Windows, Linux, Unix, MacOS, MacOSX}.

We’ll automatically download a QuEST executable and locally connect.

env = CreateDownloadedQuESTEnv[];

This loads further package functions and circuit symbols, listed below.

? QuEST`*

������

ApplyCircuit CloneQureg GetAllQuregs

MixTwoQubitDepol-
arising

ApplyPauliSum CollapseToOutcome GetAmp Operator

CalcCircuitMatrix CreateDensityQureg

GetPauliSumFrom-
Coeffs P

CalcDensityInnerPr-
oduct

CreateDensityQure-
gs GetQuregMatrix PackageExport

CalcDensityInnerPr-
oducts

CreateDownloaded-
QuESTEnv H R

CalcExpecPauliProd

CreateLocalQuEST-
Env InitClassicalState Rx

CalcExpecPauliSum CreateQureg InitPlusState Ry

CalcFidelity CreateQuregs InitPureState Rz

CalcHilbertSchmidt-
Distance

CreateRemoteQuE-
STEnv InitStateFromAmps S

CalcInnerProduct Damp InitZeroState SetQuregMatrix

CalcInnerProducts Deph IsDensityMatrix SetWeightedQureg

CalcPauliSumMatrix Depol Kraus SWAP

CalcProbOfOutcom-
e DestroyAllQuregs M T

CalcPurity DestroyQuESTEnv MixDamping U

CalcQuregDerivs DestroyQureg MixDephasing X

CalcTotalProb DrawCircuit MixDepolarising Y

Circuit G

MixTwoQubitDeph-
asing Z

Creating quantum registers
Now that we’re connected to a QuEST runtime environment, we can allocate quantum registers

as state vectors or density matrices.

numQb = 9;
ψ = CreateQureg[numQb];
ρ = CreateDensityQureg[numQb];

These registers are stored in the environment which may be remote. The Mathematica kernel
only knows the IDs by which to identify these structures to the QuEST environment.

2 ��� tutorial.nb

ψ

0

ρ

1

GetAllQuregs[]

{0, 1}

This means we can create, operate on and study states that are too large to fit in Mathematica, or
even this machine!

InitPlusState @ ψ;
CalcProbOfOutcome[ψ, 5, 1]

0.5

? InitPlusState
? CalcProbOfOutcome

InitPlusState[qureg] sets the qureg to state |+> (and returns the qureg id).

CalcProbOfOutcome[qureg, qubit, outcome]
returns the probability of measuring qubit in the given outcome.

 With some overhead, we can view the state with GetQuregMatrix (which is initially ψ = |0〉 and ρ

= |0〉〈0|).

Dimensions @ GetQuregMatrix[ψ]

{512}

Dimensions @ GetQuregMatrix[ρ]

{512, 512}

The state vectors will live in the QuEST environment until individually destroyed...

DestroyQureg[ψ]
DestroyQureg[ρ]

or all at once.

DestroyAllQuregs[];

Specifying gates
Individual gates have syntax GateNametargetQubit where the targetQubit index is subscript (ctrl-
minus) and indexes from 0. E.g. H3 represents a Hadamard on the 4th qubit

tutorial.nb ���3

? H

H is the Hadamard gate.

Some gates additionally accept parameters in square brackets, e.g. Ry2[ϕ]

? Ry

Ry[theta] is a rotation of theta around the y-axis of the Bloch sphere.

This can include matrices, e.g. U3
0 ⅈ

Exp[.3 ⅈ] 0  ...

? U

U[matrix] is a general 1 or 2 qubit unitary gate, enacting the given 2x2 or 4x4 matrix.

and lists of matrices, e.g. Kraus2
1 0

0 1 - p
, 0 p

0 0
 ...

? Kraus

Kraus[ops] applies a one or two-qubit Kraus map (given as a list of Kraus operators) to a density matrix.

Multiple target qubits are comma separated, or supplied as a list, e.g. SWAP0,3 and M0,1,2,3 ...

? SWAP
? M

SWAP is a 2 qubit gate which swaps the state of two qubits.

M is a destructive measurement gate which measures the indicated qubits in the Z basis.

unless specified as Pauli sequences, e.g. R[ϕ, X2 Y3 Z0]

? R

R[theta, paulis] is the unitary Exp[-i θ/2 paulis].

Controlled gates are merely wrapped in Ccontrol qubits[], e.g. C1,2[X3] is a doubly-controlled NOT

C0,1,2U6,3
ⅇ
ⅈ

π

3 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

;

Some operations like decoherence are only relevant for density matrices (states created with

createDensityQureg)

4 ��� tutorial.nb

? Deph
? Depol
? Damp
? Kraus

Deph[prob] is a 1 or 2 qubit dephasing with probability prob of error.

Depol[prob] is a 1 or 2 qubit depolarising with probability prob of error.

Damp[prob] is 1 qubit amplitude damping with the givern decay probability.

Kraus[ops] applies a one or two-qubit Kraus map (given as a list of Kraus operators) to a density matrix.

Applying circuits
A circuit can be written verbosely as a list (to be applied le�-to-right) of gates...

{H2, Rz1[.3], C4[X3], C0,1,2[SWAP4,5]};
DrawCircuit[%]

H

Rz

or concisely as a direct product wrapped in Circuit[] to prevent automatic commutation (or to

be reversed, Operator[])

Circuit[H2 Rz1[.3] C4[X3] C0,1,2[SWAP4,5]]

{H2, Rz1[0.3], C4[X3], C0,1,2[SWAP4,5]}

Operator[H2 Rz1[.3] C4[X3] C0,1,2[SWAP4,5]]

{C0,1,2[SWAP4,5], C4[X3], Rz1[0.3], H2}

Circuits can be specified in terms of symbols/parameters, though which must be assigned

numerical values before simulation.

tutorial.nb ���5

m1 = 
0 ⅈ

Exp[.3 ⅈ] 0
;

m2 =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

;

u[θ_] := Circuit

S5 T7 Y8 Ry3[θ] C3[Rz2[θ]] C8,7,6[Z5] M0 Ry3[θ] M1,3,4 SWAP0,3 C5[SWAP4,6]

Depol2,4θ  100 Deph7,6θ  400 M0 H2 X3 T5 C0,2,3,4[X1] C0[U1,7[m2]] U2,4[m2]

U7[m1] SWAP0,1 Depol5θ  300 Deph0θ  200 Damp7θ  500 C2,3[SWAP4,5]

U3,1[m2] U4,5[m2] U6,8[m2] X0 U0,1[m2] C2,3,4,5[T6] C0,2,4,5[U1,3[m2]] C6,8[U7[m1]]

;

DrawCircuit @ u[θ]

S

T

Y

Ry

Rz

Ry

Δ

ϕ

H

T

U

U

U

Δ

ϕ

γ

U

U

U

U

T

U

U

Circuits can be applied to instantiated quantum registers through ApplyCircuit

ψ = CreateQureg[3];

ApplyCircuit CircuitH0 X1 Ry2π  3, ψ;

GetQuregMatrix[ψ]

{0. + 0. ⅈ, 0. + 0. ⅈ, 0.612372 + 0. ⅈ, 0.612372 + 0. ⅈ,
0. + 0. ⅈ, 0. + 0. ⅈ, 0.353553 + 0. ⅈ, 0.353553 + 0. ⅈ}

? ApplyCircuit

ApplyCircuit[circuit, qureg]modifies qureg by applying the circuit. Returns any
measurement outcomes, grouped by M operators and ordered by their order in M.

ApplyCircuit[circuit, inQureg, outQureg] leaves inQureg unchanged, but
modifies outQureg to be the result of applying the circuit to inQureg.

ApplyCircuit returns a list of the random measurement outcomes (if any), ordered and grouped

by the ordering of M in the circuit

6 ��� tutorial.nb

ApplyCircuit[Circuit[M0 M1,2], ψ]

{{0}, {1, 0}}

Remember these measurements are destructive

ApplyCircuit[Circuit[M0,1,2], ψ]

{{0, 1, 0}}

Remember that symbols/parameters in the circuit must be given numerical values before

evaluation

ApplyCircuit[Rx0[ϕ], ψ]

������������� ������� �������� ���-��������� ����������!

$Failed

Circuits applied to density matrices are no different

ApplyCircuit[u[0], InitPlusState @ CreateDensityQureg[9]]

{{0}, {1, 0, 1}, {0}}

Analysing quantum states
DestroyAllQuregs[];

Quantum registers can be studied without expensively copying their state vector or density

matrix to Mathematica from the QuEST environment.

ρ = InitPlusState @ CreateDensityQureg @ numQb;
ApplyCircuit[Depol0,1[.1], ρ];
CalcPurity[ρ]
? CalcPurity

0.848533

CalcPurity[qureg] returns the purity of the given density matrix.

ψ = InitPlusState @ CreateQureg @ numQb;
CalcFidelity[ρ, ψ]

? CalcFidelity

0.92

CalcFidelity[qureg1, qureg2] returns the fidelity between the given states.

tutorial.nb ���7

CalcProbOfOutcome[ρ, 0, 0]
ApplyCircuit[Damp0[.1], ρ];
CalcProbOfOutcome[ρ, 0, 0]
? CalcProbOfOutcome

0.5

0.55

CalcProbOfOutcome[qureg, qubit, outcome]
returns the probability of measuring qubit in the given outcome.

This allows us to express complicated calculations succinctly, and evaluate them quickly.

ApplyCircuit[u[0], InitPlusState @ ψ];

params = Range[0, π, .01];
fids = Table[

ApplyCircuit[u[θ], InitPlusState @ ρ];
CalcFidelity[ρ, ψ],
{θ, params}

];

Here we’ve calculated how smoothly varying the noise level θ in our complicated u[θ] circuit
(drawn here) affects the fidelity with its initial |+〉〈+| state. Note the results here are random since

our circuit contains projective measurement gates.

ListPlot

Transpose[{params, fids}],

AxesLabel → "θ", "ψ ρ ψ",

Filling → Bottom



0.5 1.0 1.5 2.0 2.5 3.0
θ

0.0005

0.0010

0.0015

ψ ρ ψ

Finally, we free the state-vectors from the QuEST environment and disconnect from quest_link

(killing the process).

8 ��� tutorial.nb

DestroyAllQuregs[];
DestroyQuESTEnv[env];

tutorial.nb ���9

